Affiliation:
1. Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
2. Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
Abstract
Soil lead (Pb) contamination in Pb paint-contaminated homes is a serious health risk in urban areas. Phytoextraction is a green and sustainable technology for soil Pb remediation, but its efficiency depends on the geochemical partitioning of Pb in soil. Following successful laboratory, greenhouse, and panel experiments, a field study was conducted to demonstrate the effectiveness of a chemically catalyzed phytoextraction model for Pb removal. A biodegradable chelating agent, ethylenediaminedisuccinic acid (EDDS) was applied during Pb phytoextraction by vetiver grass (Chrysopogon zizanioides) in a Pb-contaminated community garden in Jersey City, New Jersey. Results showed that soil Pb concentration was reduced from 1144 to 359 mg/kg in 3 years, despite ongoing Pb input to the field plots from a nearby construction site. EDDS was effective in converting non-plant-available forms of Pb (i.e., carbonate-bound, oxide-bound, and organic-bound forms) to plant-available forms (i.e., water-soluble and exchangeable forms). With EDDS application, vetiver roots accumulated 532, 231, and 401 mg/kg of Pb in Years 1, 2, and 3, respectively, which were higher than the values obtained without EDDS applications (228, 154, and 214 mg/kg). This field study demonstrated the effectiveness of a chemically catalyzed phytoextraction model for Pb removal from urban soils.
Funder
United States Department of Housing and Urban Development
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献