Three-Dimensional Cloud Structure Reconstruction from the Directional Polarimetric Camera

Author:

Yu HaixiaoORCID,Ma Jinji,Ahmad Safura,Sun Erchang,Li Chao,Li Zhengqiang,Hong Jin

Abstract

Clouds affect radiation transmission through the atmosphere, which impacts the Earth’ s energy balance and climate. Currently, the study of clouds is mostly based on a two-dimensional (2-D) plane rather than a three-dimensional (3-D) space. However, 3-D cloud reconstruction is playing an important role not only in a radiation transmission calculation but in forecasting climate change as well. Currently, the study of clouds is mostly based on 2-D single angle satellite observation data while the importance of a 3-D structure of clouds in atmospheric radiation transmission is ignored. 3-D structure reconstruction would improve the radiation transmission accuracy of the cloudy atmosphere based on multi-angle observations data. Characterizing the 3-D structure of clouds is crucial for an extensive study of this complex intermediate medium in the atmosphere. In addition, it is also a great carrier for visualization of its parameters. Special attributes and the shape of clouds can be clearly illustrated in a 3-D cloud while these are difficult to describe in a 2-D plane. It provides a more intuitive expression for the study of complex cloud systems. In order to reconstruct a 3-D cloud structure, we develop and explore a ray casting algorithm applied to data from the Directional Polarimetric Camera (DPC), which is onboard the GF-5 satellite. In this paper, we use DPC with characteristics of imaging multiple angles of the same target, and characterize observations of clouds from different angles in 3-D space. This feature allows us to reconstruct 3-D clouds from different angles of observations. In terms of verification, we use cloud profile data provided by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to compare with the results of reconstructed 3-D clouds based on DPC data. This shows that the reconstruction method has good accuracy and effectiveness. This 3-D cloud reconstruction method would lay a scientific reference for future analysis on the role of clouds in the atmosphere and for the construction of 3-D structures of aerosols.

Funder

National Natural Science Foundation of China

K. C. Wong Education Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Modelling clouds and cloud processes for use in climate models;Arakawa,1975

2. Mission to Planet Earth: Role of Clouds and Radiation in Climate

3. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models

4. A 3D cloud-construction algorithm for the EarthCARE satellite mission

5. Three-Dimensional Cloud Volume Reconstruction from the Multi-Angle Imaging SpectroRadiometerhttp://hdl.handle.net/2142/99363

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3