Continuous Glucose Monitors and Activity Trackers to Inform Insulin Dosing in Type 1 Diabetes: The University of Virginia Contribution

Author:

Fabris Chiara,Ozaslan BasakORCID,Breton Marc D.

Abstract

Objective: Suboptimal insulin dosing in type 1 diabetes (T1D) is frequently associated with time-varying insulin requirements driven by various psycho-behavioral and physiological factors influencing insulin sensitivity (IS). Among these, physical activity has been widely recognized as a trigger of altered IS both during and following the exercise effort, but limited indication is available for the management of structured and (even more) unstructured activity in T1D. In this work, we present two methods to inform insulin dosing with biosignals from wearable sensors to improve glycemic control in individuals with T1D. Research Design and Methods: Continuous glucose monitors (CGM) and activity trackers are leveraged by the methods. The first method uses CGM records to estimate IS in real time and adjust the insulin dose according to a person’s insulin needs; the second method uses step count data to inform the bolus calculation with the residual glucose-lowering effects of recently performed (structured or unstructured) physical activity. The methods were tested in silico within the University of Virginia/Padova T1D Simulator. A standard bolus calculator and the proposed “smart” systems were deployed in the control of one meal in presence of increased/decreased IS (Study 1) and following a 1-hour exercise bout (Study 2). Postprandial glycemic control was assessed in terms of time spent in different glycemic ranges and low/high blood glucose indices (LBGI/HBGI), and compared between the dosing strategies. Results: In Study 1, the CGM-informed system allowed to reduce exposure to hypoglycemia in presence of increased IS (percent time < 70 mg/dL: 6.1% versus 9.9%; LBGI: 1.9 versus 3.2) and exposure to hyperglycemia in presence of decreased IS (percent time > 180 mg/dL: 14.6% versus 18.3%; HBGI: 3.0 versus 3.9), tending toward optimal control. In Study 2, the step count-informed system allowed to reduce hypoglycemia (percent time < 70 mg/dL: 3.9% versus 13.4%; LBGI: 1.7 versus 3.2) at the cost of a minor increase in exposure to hyperglycemia (percent time > 180 mg/dL: 11.9% versus 7.5%; HBGI: 2.4 versus 1.5). Conclusions: We presented and validated in silico two methods for the smart dosing of prandial insulin in T1D. If seen within an ensemble, the two algorithms provide alternatives to individuals with T1D for improving insulin dosing accommodating a large variety of treatment options. Future work will be devoted to test the safety and efficacy of the methods in free-living conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3