Precision Agriculture Applied to Harvesting Operations through the Exploitation of Numerical Simulation

Author:

Cheli Federico1ORCID,Abdelaziz Ahmed Khaled Mohamed2,Arrigoni Stefano1ORCID,Paparazzo Francesco1,Pezzola Marco2ORCID

Affiliation:

1. Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy

2. Soluzioni Ingegneria, Via Lorenzo Balicco 113, 23900 Lecco, Italy

Abstract

When it comes to harvesting operations, precision agriculture needs to consider both combine harvester technology and the precise execution of the process to eliminate harvest losses and minimize out-of-work time. This work aims to propose a complete control framework defined by a two-layer-based algorithm and a simulation environment suitable for quantitative harvest loss, time, and consumption analyses. In detail, the path-planning layer shows suitable harvesting techniques considering field boundaries and irregularities, while the path-tracking layer presents a vision-guided Stanley Lateral Controller. In order to validate the developed control framework, challenging driving scenarios were created using IPG-CarMaker software to emulate wheat harvesting operations. Results showed the effectiveness of the designed controller to follow the reference trajectory under regular field conditions with zero harvest waste and minimum out-of-work time. Whereas, in presence of harsh road irregularities, the reference trajectory should be re-planned by either selecting an alternative harvesting method or overlapping the harvester header by some distance to avoid missing crops. Quantitative and qualitative comparisons between the two harvesting techniques as well as a relationship between the level of irregularities and the required overlap will be presented. Eventually, a Driver-in-the-loop (DIL) framework is proposed as a methodology to compare human and autonomous driving.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3