Understanding the Planform Complexity and Morphodynamic Properties of Brahmaputra River in Bangladesh: Protection and Exploitation of Riparian Areas

Author:

Sarker Shiblu1ORCID,Sarker Tanni2ORCID,Leta Olkeba Tolessa1ORCID,Raihan Sarder Udoy3ORCID,Khan Imran4,Ahmed Nur1ORCID

Affiliation:

1. Bureau of Watershed Management and Modeling, St. Johns River Water Management District, Palatka, FL 32177, USA

2. School of Planning, Design and Construction, Michigan State University, East Lansing, MI 48824, USA

3. Bangladesh Water Development Board, Dhaka 1215, Bangladesh

4. Institute of Water Modelling (IWM), Dhaka 1230, Bangladesh

Abstract

The Brahmaputra River (BR) is a heavily braided river, due to various intricate paths, high discharge variability and bank erodibility, as well as multi-channel features, which, in turn, cause huge energy dissipation. The river also experiences anastomosing planform changes in response to seasonal water and sediment waves, resulting in a morphology with extreme complexity. The purpose of this study was to provide detailed and quantitative insights into the properties of planform complexity and dynamics of channel patterns that can complement previous studies. This was achieved by investigating the applicability of the anastomosing classification on the Brahmaputra river’s planform, and computing disorder/unpredictability and complexity of fluctuations using the notion of entropy and uniformity of energy conversion rate by the channels, by means of a power spectral density approach. In addition, we also evaluated their correlation with discharge as a dynamic imprint of river systems on alluvial landscapes, in order to test the hypothesis that river flow may be responsible for the development of anastomosing planforms. The analysis suggests that higher discharge values could lead to less complex planform and less fluctuations on the alluvial landscape, as compared to lower discharge values. The proposed framework has significant potential to assist in understanding the response of complex alluvial planform under flow dynamics for the BR and other similar systems.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3