Landslides Information Extraction Using Object-Oriented Image Analysis Paradigm Based on Deep Learning and Transfer Learning

Author:

Lu HengORCID,Ma Lei,Fu Xiao,Liu Chao,Wang Zhi,Tang Min,Li Naiwen

Abstract

How to acquire landslide disaster information quickly and accurately has become the focus and difficulty of disaster prevention and relief by remote sensing. Landslide disasters are generally featured by sudden occurrence, proposing high demand for emergency data acquisition. The low-altitude Unmanned Aerial Vehicle (UAV) remote sensing technology is widely applied to acquire landslide disaster data, due to its convenience, high efficiency, and ability to fly at low altitude under cloud. However, the spectrum information of UAV images is generally deficient and manual interpretation is difficult for meeting the need of quick acquisition of emergency data. Based on this, UAV images of high-occurrence areas of landslide disaster in Wenchuan County and Baoxing County in Sichuan Province, China were selected for research in the paper. Firstly, the acquired UAV images were pre-processed to generate orthoimages. Subsequently, multi-resolution segmentation was carried out to obtain image objects, and the barycenter of each object was calculated to generate a landslide sample database (including positive and negative samples) for deep learning. Next, four landslide feature models of deep learning and transfer learning, namely Histograms of Oriented Gradients (HOG), Bag of Visual Word (BOVW), Convolutional Neural Network (CNN), and Transfer Learning (TL) were compared, and it was found that the TL model possesses the best feature extraction effect, so a landslide extraction method based on the TL model and object-oriented image analysis (TLOEL) was proposed; finally, the TLOEL method was compared with the object-oriented nearest neighbor classification (NNC) method. The research results show that the accuracy of the TLOEL method is higher than the NNC method, which can not only achieve the edge extraction of large landslides, but also detect and extract middle and small landslides accurately that are scatteredly distributed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3