Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms

Author:

Pham ,Shirzadi ,Shahabi ,Omidvar ,Singh ,Sahana ,Asl ,Ahmad ,Quoc ,Lee

Abstract

: Landslides have multidimensional effects on the socioeconomic as well as environmental conditions of the impacted areas. The aim of this study is the spatial prediction of landslide using hybrid machine learning models including bagging (BA), random subspace (RS) and rotation forest (RF) with alternating decision tree (ADTree) as base classifier in the northern part of the Pithoragarh district, Uttarakhand, Himalaya, India. To construct the database, ten conditioning factors and a total of 103 landslide locations with a ratio of 70/30 were used. The significant factors were determined by chi-square attribute evaluation (CSEA) technique. The validity of the hybrid models was assessed by true positive rate (TP Rate), false positive rate (FP Rate), recall (sensitivity), precision, F-measure and area under the receiver operatic characteristic curve (AUC). Results concluded that land cover was the most important factor while curvature had no effect on landslide occurrence in the study area and it was removed from the modelling process. Additionally, results indicated that although all ensemble models enhanced the power prediction of the ADTree classifier (AUCtraining = 0.859; AUCvalidation = 0.813); however, the RS ensemble model (AUCtraining = 0.883; AUCvalidation = 0.842) outperformed and outclassed the RF (AUCtraining = 0.871; AUCvalidation = 0.840), and the BA (AUCtraining = 0.865; AUCvalidation = 0.836) ensemble model. The obtained results would be helpful for recognizing the landslide prone areas in future to better manage and decrease the damage and negative impacts on the environment.

Funder

Korea Institute of Geoscience, Mineral Resources (KIGAM)

Universiti Teknologi Malaysia (UTM) based on Research University Grant

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3