A Fast CU Partition Algorithm Based on Gradient Structural Similarity and Texture Features

Author:

Jing Zhiyong,Li Peng,Zhao JinchaoORCID,Zhang Qiuwen

Abstract

The H.266/Versatile Video Coding (VVC) standard poses a great challenge for encoder design due to its high computational complexity and long encoding time. In this paper, the fast partitioning decision of coding blocks is investigated to reduce the computational complexity and save the coding time of VVC intra-frame predictive coding. A fast partitioning algorithm of VVC intra-frame coding blocks based on gradient structure similarity and directional features is proposed. First, the average gradient structure similarity of four sub-coding blocks under the current coding block is calculated, and two thresholds are set to determine whether the current coding block terminates the partitioning early or performs quadtree partitioning. Then, for the coding blocks that do not satisfy the above thresholds, the standard deviation of the vertical and horizontal directions of the current coding block is calculated to determine the texture direction and skip unnecessary partitioning to reduce computational complexity. Based on the VTM10.0 platform, this paper evaluates the performance of the designed fast algorithm for partitioning within the VVC coding unit. Compared with VTM10.0, the encoding rate is improved by 1.38% on average, and the encoder execution time is reduced by 49.32%. The overall algorithm achieves a better optimization of the existing VVC intra-frame coding technique.

Funder

National Natural Science Foundation of China

Basic Research Projects of Education Department of Henan

Key Research and Development Program of Henan

Postgraduate Education Reform and Quality Improvement Project of Henan Province

key Scientific and Technological Project of Henan Province

Henan Key Laboratory of Network Cryptography Technology

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3