Faster Intra-Prediction of Versatile Video Coding Using a Concatenate-Designed CNN via DCT Coefficients

Author:

Im Sio-Kei12ORCID,Chan Ka-Hou12ORCID

Affiliation:

1. Faculty of Applied Sciences, Macao Polytechnic University, Macau 999078, China

2. Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macau 999078, China

Abstract

As the next generation video coding standard, Versatile Video Coding (VVC) significantly improves coding efficiency over the current High-Efficiency Video Coding (HEVC) standard. In practice, this improvement comes at the cost of increased pre-processing complexity. This increased complexity faces the challenge of implementing VVC for time-consuming encoding. This work presents a technique to simplify VVC intra-prediction using Discrete Cosine Transform (DCT) feature analysis and a concatenate-designed CNN. The coefficients of the (DTC-)transformed CUs reflect the complexity of the original texture, and the proposed CNN employs multiple classifiers to predict whether they should be split. This approach can determine whether to split Coding Units (CUs) of different sizes according to the Versatile Video Coding (VVC) standard. This helps to simplify the intra-prediction process. The experimental results indicate that our approach can reduce the encoding time by 52.77% with a minimal increase of 1.48%. We use the Bjøntegaard Delta Bit Rate (BDBR) compared to the original algorithm, demonstrating a competitive result with other state-of-the-art methods in terms of coding efficiency with video quality.

Funder

Macao Polytechnic University

Publisher

MDPI AG

Reference54 articles.

1. Overview of the Versatile Video Coding (VVC) Standard and its Applications;Bross;IEEE Trans. Circuits Syst. Video Technol.,2021

2. Overview of the High Efficiency Video Coding (HEVC) Standard;Sullivan;IEEE Trans. Circuits Syst. Video Technol.,2012

3. Overview of the Screen Content Support in VVC: Applications, Coding Tools, and Performance;Nguyen;IEEE Trans. Circuits Syst. Video Technol.,2021

4. Quantization and Entropy Coding in the Versatile Video Coding (VVC) Standard;Schwarz;IEEE Trans. Circuits Syst. Video Technol.,2021

5. VVC Complexity and Software Implementation Analysis;Bossen;IEEE Trans. Circuits Syst. Video Technol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3