Mapping the Location and Extent of 2019 Prevent Planting Acres in South Dakota Using Remote Sensing Techniques

Author:

Lawal Afolarin,Kerner HannahORCID,Becker-Reshef Inbal,Meyer Seth

Abstract

The inability of a farmer to plant an insured crop by the policy’s final planting date can pose financial challenges for the grower and cause reduced production for a widely impacted region. Prevented planting is primarily caused by excess moisture or rainfall such as the catastrophic flooding and widespread conditions that prevented active field work in the midwestern region of United States in 2019. While the Farm Service Agency reports the number of such “prevent plant” acres each year at the county scale, field-scale maps of prevent plant fields—which would enable analyses related to assessing and mitigating the impact of climate on agriculture—are not currently available. The aim of this study is to demonstrate a method for mapping likely prevent plant fields based on flood mapping and historical cropland maps. We focused on a study region in eastern South Dakota and created flood maps using Landsat 8 and Sentinel 1 images from 2018 and 2019. We used automatic threshold-based change detection using NDVI and NDWI to accentuate changes likely caused by flooding. The NDVI change detection map showed vegetation loss in the eastern parts of the study area while NDWI values showed increased water content, both indicating possible flooding events. The VH polarization of Sentinel 1 was also particularly useful in identifying potential flooded areas as the VH values for 2019 were substantially lower than those of 2018, especially in the northern part of the study area, likely indicating standing water or reduced biomass. We combined the flood maps from Landsat 8 and Sentinel 1 to form a complete flood likelihood map over the entire study area. We intersected this flood map with a map of fallow pixels extracted from the Cropland Data Layer to produce a map of predicted prevent plant acres across several counties in South Dakota. The predicted figures were within 10% error of Farm Service Agency reports, with low errors in the most affected counties in the state such as Beadle, Hanson, and Hand.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. 2019 Catastrophic River Floodinghttps://disasterphilanthropy.org/disaster/2019-u-s-spring-floods/

2. Late Planting Decisions in 2019;Schnitkey;Farmdoc Dly.,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3