Above- and belowground linkages during extreme moisture excess: leveraging knowledge from natural ecosystems to better understand implications for row-crop agroecosystems

Author:

Sprunger Christine D123,Lindsey Alex4,Lightcap Ainsley3

Affiliation:

1. W.K. Kellogg Biological Station, Michigan State University , MI , USA

2. Department of Plant, Soil, and Microbial Sciences, Michigan State University , MI , USA

3. School of Environment and Natural Resources, The Ohio State University , OH , USA

4. Department of Horticulture and Crop Science, The Ohio State University , OH , USA

Abstract

Abstract Above- and belowground linkages are responsible for some of the most important ecosystem processes in unmanaged terrestrial systems including net primary production, decomposition, and carbon sequestration. Global change biology is currently altering above- and belowground interactions, reducing ecosystem services provided by natural systems. Less is known regarding how above- and belowground linkages impact climate resilience, especially in intentionally managed cropping systems. Waterlogged or flooded conditions will continue to increase across the Midwestern USA due to climate change. The objective of this paper is to explore what is currently known regarding above- and belowground linkages and how they impact biological, biochemical, and physiological processes in systems experiencing waterlogged conditions. We also identify key above- and belowground processes that are critical for climate resilience in Midwestern cropping systems by exploring various interactions that occur within unmanaged landscapes. Above- and belowground interactions that support plant growth and development, foster multi-trophic-level interactions, and stimulate balanced nutrient cycling are critical for crops experiencing waterlogged conditions. Moreover, incorporating ecological principles such as increasing plant diversity by incorporating crop rotations and adaptive management via delayed planting dates and adjustments in nutrient management will be critical for fostering climate resilience in row-crop agriculture moving forward.

Funder

U.S. Department of Agriculture

National Institute of Food and Agriculture

Foundational and Applied Science Program—Foundational Knowledge of Agricultural Production Systems

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3