Machine Learning for Climate Precipitation Prediction Modeling over South America

Author:

Anochi Juliana AparecidaORCID,de Almeida Vinícius AlbuquerqueORCID,de Campos Velho Haroldo FragaORCID

Abstract

Many natural disasters in South America are linked to meteorological phenomena. Therefore, forecasting and monitoring climatic events are fundamental issues for society and various sectors of the economy. In the last decades, machine learning models have been developed to tackle different issues in society, but there is still a gap in applications to applied physics. Here, different machine learning models are evaluated for precipitation prediction over South America. Currently, numerical weather prediction models are unable to precisely reproduce the precipitation patterns in South America due to many factors such as the lack of region-specific parametrizations and data availability. The results are compared to the general circulation atmospheric model currently used operationally in the National Institute for Space Research (INPE: Instituto Nacional de Pesquisas Espaciais), Brazil. Machine learning models are able to produce predictions with errors under 2 mm in most of the continent in comparison to satellite-observed precipitation patterns for different climate seasons, and also outperform INPE’s model for some regions (e.g., reduction of errors from 8 to 2 mm in central South America in winter). Another advantage is the computational performance from machine learning models, running faster with much lower computer resources than models based on differential equations currently used in operational centers. Therefore, it is important to consider machine learning models for precipitation forecasts in operational centers as a way to improve forecast quality and to reduce computation costs.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3