A Neural Network Nonlinear Multimodel Ensemble to Improve Precipitation Forecasts over Continental US

Author:

Krasnopolsky Vladimir M.12,Lin Ying1

Affiliation:

1. National Centers for Environmental Prediction, NOAA, College Park, MD 20740, USA

2. Earth System Sciences Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA

Abstract

A novel multimodel ensemble approach based on learning from data using the neural network (NN) technique is formulated and applied for improving 24-hour precipitation forecasts over the continental US. The developed nonlinear approach allowed us to account for nonlinear correlation between ensemble members and to produce “optimal” forecast represented by a nonlinear NN ensemble mean. The NN approach is compared with the conservative multi-model ensemble, with multiple linear regression ensemble approaches, and with results obtained by human forecasters. The NN multi-model ensemble improves upon conservative multi-model ensemble and multiple linear regression ensemble, it (1) significantly reduces high bias at low precipitation level, (2) significantly reduces low bias at high precipitation level, and (3) sharpens features making them closer to the observed ones. The NN multi-model ensemble performs at least as well as human forecasters supplied with the same information. The developed approach is a generic approach that can be applied to other multi-model ensemble fields as well as to single model ensembles.

Funder

MMAB Contribution

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3