Affiliation:
1. Department of Agricultural and Applied Economics University of Georgia Athens Georgia USA
Abstract
AbstractForecasts are common in agricultural settings where they are routinely used for decision‐making. The advent of the computer age has allowed for rapid generation of individual forecasts that can be updated in real time. It is well known that the selection and use of a single forecast can expose the forecaster to serious error as a result of model mis‐specification. Forecast combination avoids this problem by combining information from different forecasts. Although forecast combination can be as simple as averaging across forecasts, advances in machine learning have made it possible to combine forecasts according to more complicated weighting schemes and criteria. We provide an overview of forecast combination techniques, including those at the frontier of current practice and involving machine learning. We also provide a retrospective on the use of forecast combination in agricultural economics and prospects for the future. Several of the techniques are illustrated in an application to forecasting nationwide corn and soybean planted acreage and we demonstrate how forecast combination can improve expert USDA projections.