An Extremely Close Vibration Frequency Signal Recognition Using Deep Neural Networks

Author:

Jati Mentari Putri12ORCID,Luthfi Muhammad Irfan3,Yao Cheng-Kai1ORCID,Dehnaw Amare Mulatie1ORCID,Manie Yibeltal Chanie1ORCID,Peng Peng-Chun1

Affiliation:

1. Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2. Department of Electrical and Electronics Engineering, Vocational Faculty, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia

3. Department of Electronics and Informatics Engineering Education, Engineering Faculty, Universitas Negeri, Yogyakarta 55281, Indonesia

Abstract

This study proposes the utilization of an optical fiber vibration sensor for detecting the superposition of extremely close frequencies in vibration signals. Integration of deep neural networks (DNN) proves to be meaningful and efficient, eliminating the need for signal analysis methods involving complex mathematical calculations and longer computation times. Simulation results of the proposed model demonstrate the remarkable capability to accurately distinguish frequencies below 1 Hz. This underscores the effectiveness of the proposed image-based vibration signal recognition system embedded in DNN as a streamlined yet highly accurate method for vibration signal detection, applicable across various vibration sensors. Both simulation and experimental evaluations substantiate the practical applicability of this integrated approach, thereby enhancing electric motor vibration monitoring techniques.

Funder

National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3