Deep Coupled Visual Perceptual Networks for Motor Fault Diagnosis Under Nonstationary Conditions
Author:
Affiliation:
1. School of Mechanical Engineering, Southeast University, Nanjing, China
2. School of Mechatronics Engineering, Nanjing Forestry University, Nanjing, China
3. School of Engineering, University of British Columbia, Kelowna, BC, Canada
Funder
National Key Research and Development Program of China
Jiangsu Industrial and Information Industry Transformation and Upgrading
National Natural Science Foundation of China
Postgraduate Research & Practice Innovation Program of Jiangsu Province
China Scholarship Council
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/3516/9985401/09763558.pdf?arnumber=9763558
Reference27 articles.
1. Multireceptive Field Denoising Residual Convolutional Networks for Fault Diagnosis
2. Modified Stacked Auto-encoder Using Adaptive Morlet Wavelet for Intelligent Fault Diagnosis of Rotating Machinery
3. Fault Diagnosis of Conventional Circuit Breaker Contact System Based on Time–Frequency Analysis and Improved AlexNet
4. Multiple Wavelet Coefficients Fusion in Deep Residual Networks for Fault Diagnosis
5. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals;wei;SENSORS,2017
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Temporal self-supervised domain adaptation network for machinery fault diagnosis under multiple non-ideal conditions;Reliability Engineering & System Safety;2024-11
2. Reinforced fuzzy domain adaptation: Revolutionizing data-unaccessible rotating machinery fault diagnosis across multiple domains;Expert Systems with Applications;2024-10
3. AMCW-DFFNSA: An interpretable deep feature fusion network for noise-robust machinery fault diagnosis;Knowledge-Based Systems;2024-10
4. Fast Online Fault Diagnosis for PMSM Based on Adaptation Model;IEEE Sensors Journal;2024-08-01
5. MNHP-GAE: A Novel Manipulator Intelligent Health State Diagnosis Method in Highly Imbalanced Scenarios;IEEE Internet of Things Journal;2024-07-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3