Abstract
With a large of time series dataset from the Internet of Things in Ambient Intelligence-enabled smart environments, many supervised learning-based anomaly detection methods have been investigated but ignored the correlation among the time series. To address this issue, we present a new idea for anomaly detection based on dynamic graph embedding, in which the dynamic graph comprises the multiple time series and their correlation in each time interval. We propose an entropy for measuring a graph’s information injunction with a correlation matrix to define similarity between graphs. A dynamic graph embedding model based on the graph similarity is proposed to cluster the graphs for anomaly detection. We implement the proposed model in vehicular edge computing for traffic incident detection. The experiments are carried out using traffic data produced by the Simulation of Urban Mobility framework. The experimental findings reveal that the proposed method achieves better results than the baselines by 14.5% and 18.1% on average with respect to F1-score and accuracy, respectively.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献