Deep Learning for Anomaly Detection

Author:

Pang Guansong1,Shen Chunhua1,Cao Longbing2,Hengel Anton Van Den1

Affiliation:

1. University of Adelaide, Adelaide, South Australia

2. University of Technology Sydney, Sydney, New South Wales

Abstract

Anomaly detection, a.k.a. outlier detection or novelty detection, has been a lasting yet active research area in various research communities for several decades. There are still some unique problem complexities and challenges that require advanced approaches. In recent years, deep learning enabled anomaly detection, i.e., deep anomaly detection , has emerged as a critical direction. This article surveys the research of deep anomaly detection with a comprehensive taxonomy, covering advancements in 3 high-level categories and 11 fine-grained categories of the methods. We review their key intuitions, objective functions, underlying assumptions, advantages, and disadvantages and discuss how they address the aforementioned challenges. We further discuss a set of possible future opportunities and new perspectives on addressing the challenges.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference178 articles.

1. Davide Abati Angelo Porrello Simone Calderara and Rita Cucchiara. 2019. Latent space autoregression for novelty detection. In CVPR. 481--490. Davide Abati Angelo Porrello Simone Calderara and Rita Cucchiara. 2019. Latent space autoregression for novelty detection. In CVPR. 481--490.

2. Graph based anomaly detection and description: a survey

3. Elie Aljalbout Vladimir Golkov Yawar Siddiqui Maximilian Strobel and Daniel Cremers. 2018. Clustering with deep learning: Taxonomy and new methods. arXiv:1801.07648. Retrieved from https://arxiv.org/abs/1801.07648. Elie Aljalbout Vladimir Golkov Yawar Siddiqui Maximilian Strobel and Daniel Cremers. 2018. Clustering with deep learning: Taxonomy and new methods. arXiv:1801.07648. Retrieved from https://arxiv.org/abs/1801.07648.

Cited by 1313 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3