Novel Terahertz Spectroscopy Technology for Crystallinity and Crystal Structure Analysis of Cellulose

Author:

Yang RuiORCID,Dong Xianyin,Chen Gang,Lin Feng,Huang Zhenhua,Manzo MaurizioORCID,Mao Haiyan

Abstract

Crystallinity is an essential indicator for evaluating the quality of fiber materials. Terahertz spectroscopy technology has excellent penetrability, no harmful substances, and commendable detection capability of absorption characteristics. The terahertz spectroscopy technology has great application potential in the field of fiber material research, especially for the characterization of the crystallinity of cellulose. In this work, the absorption peak of wood cellulose, microcrystalline cellulose, wood nano cellulose, and cotton nano cellulose were probed in the terahertz band to calculate the crystallinity, and the result compared with XRD and FT-IR analysis. The vibration model of cellulose molecular motion was obtained by density functional theory. The results showed that the average length of wood cellulose (WC) single fiber was 300 μm. The microcrystalline cellulose (MCC) was bar-like, and the average length was 20 μm. The cotton cellulose nanofiber (C-CNF) was a single fibrous substance with a length of 50 μm, while the wood cellulose nanofiber (W-CNF) was with a length of 250 μm. The crystallinity of cellulose samples in THz was calculated as follows: 73% for WC, 78% for MCC, 85% for W-CNF, and 90% for C-CNF. The crystallinity values were obtained by the three methods which were different to some extent. The absorption peak of the terahertz spectra was most obvious when the samples thickness was 1 mm and mixed mass ratio of the polyethylene and cellulose was 1:1. The degree of crystallinity was proportional to the terahertz absorption coefficients of cellulose, the five-movement models of cellulose molecules corresponded to the five absorption peak positions of cellulose.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3