Abstract
Bioremediation with immobilized enzymes has several advantages, such as the enhancement of selectivity, activity, and stability of biocatalysts, as well as enzyme reusability. Laccase has proven to be a good candidate for the removal of a wide range of contaminants. In this study, naked or modified MnFe2O4 magnetic nanoparticles (MNPs) were used as supports for the immobilization of laccase from Trametes versicolor. To increase enzyme loading and stability, MNPs were coated with chitosan both after the MNP synthesis (MNPs-CS) and during their formation (MNPs-CSin situ). SEM analysis showed different sizes for the two coated systems, 20 nm and 10 nm for MNPs-CS and MNPs-CSin situ, respectively. After covalent immobilization of laccase by glutaraldehyde, the MNPs-CSin situ-lac and MNPs-CS-lac systems showed a good resistance to temperature denaturation and storage stability. The most promising system for use in repeated batches was MNPs-CSin situ-lac, which degraded about 80% of diclofenac compared to 70% of the free enzyme. The obtained results demonstrated that the MnFe2O4-CSin situ system could be an excellent candidate for the removal of contaminants.
Subject
Polymers and Plastics,General Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献