Polymer Adsorbents vs. Functionalized Oxides and Carbons: Particulate Morphology and Textural and SurfaceCharacteristics

Author:

Gun’ko Volodymyr M.ORCID

Abstract

Various methods for morphological, textural, and structural characterization of polymeric, carbon, and oxide adsorbents have been developed and well described. However, there are ways to improve the quantitative information extraction from experimental data for describing complex sorbents and polymer fillers. This could be based not only on probe adsorption and electron microscopies (TEM, SEM) but also on small-angle X-ray scattering (SAXS), cryoporometry, relaxometry, thermoporometry, quasi-elastic light scattering, Raman and infrared spectroscopies, and other methods. To effectively extract information on complex materials, it is important to use appropriate methods to treat the data with adequate physicomathematical models that accurately describe the dependences of these data on pressure, concentration, temperature, and other parameters, and effective computational programs. It is shown that maximum accurate characterization of complex materials is possible if several complemented methods are used in parallel, e.g., adsorption and SAXS with self-consistent regularization procedures (giving pore size (PSD), pore wall thickness (PWTD) or chord length (CLD), and particle size (PaSD) distribution functions, the specific surface area of open and closed pores, etc.), TEM/SEM images with quantitative treatments (giving the PaSD, PSD, and PWTD functions), as well as cryo- and thermoporometry, relaxometry, X-ray diffraction, infrared and Raman spectroscopies (giving information on the behavior of the materials under different conditions).

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference135 articles.

1. The Chemistry of Silica;Iler,1979

2. The Surface Properties of Silicas,1998

3. Physical Chemistry of Surface;Adamson,1997

4. Fundamental and Applied Aspects of Chemically Modified Surfaces,1999

5. Characterisation of Porous Solids VI. Studies in Surface Science and Catalysis,2002

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3