Nanostructured composites with precipitated silica – Ni crystallites coated by char with carbonized starch

Author:

Gun'ko V. M., ,Charmas B.,Skubiszewska–Zięba J., ,

Abstract

Hybrid carbons/metals/metal (metalloid) oxides composites could be effective adsorbents for low– and high–molecular weight compounds, polar and nonpolar, gaseous and liquid. The presence of metal nanocrystallites and carbon nanostructures could provide catalytic properties in redox reactions. For more effective use of hybrid composites, their morphological, structural, textural, and adsorption characteristics should be appropriate for target applications and, therefore, well controlled. Therefore, the aim of this study was to synthesize carbon/metal/silica nanostructured composites with varied content of metal (Ni) to control the mentioned characteristics. Precipitated silica Sipernat 50 was selected as a substrate. Potato starch was used as a carbon precursor. Nickel nitrate (Ni(NO3)2·6H2O) of varied amounts was used as a precursor of Ni nanoparticles reduced upon the starch carbonization. After the starch carbonization and Ni reduction, a set of C/Ni/silica samples was studied using atomic force microscopy, X–ray diffraction, X–ray fluorescence spectroscopy, nitrogen and p-nitrophenol adsorption, thermogravimetry, and Raman spectroscopy. The presence of nickel phase results in the formation of smaller but denser packed char nanoparticles. Estimation of possible contribution of pores accessible for nitrogen molecules in silica globules and outer surface of carbon/Ni particles suggests that the carbon phase is porous that provides a significant part of the specific surface area of the composites. Amorphous silica and char phases are characterized by the presence of certain nuclei of radius (R) < 1 nm and 2 nm < R < 10 nm estimated from the XRD patterns using full peak profile analysis with a self–consistent regularization procedure. Ni crystallites are of several sizes, since particle size distributions include two–three peaks in the range of 3–13 nm in radius. The Raman spectra show that the main changes with increasing Ni content are characteristic to sp3 carbon structures (D line) in contrast to the sp2 structures (G line). The pore size distributions (both differential and incremental) demonstrate complex changes in a broad size range due to increasing Ni content in composites. As a whole, changes in the Ni content in nanostructured C/Ni/silica composites allow one to control the morphological, structural, and textural characteristics of the whole materials.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

Reference74 articles.

1. 1. Somasundaran P. (Ed.) Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015).

2. 2. Ahuja S. (Ed.) Separation Science and Technology, V. 15. (Amsterdam: Elsevier, 2022).

3. 3. Hussain C.M. (Ed.) Handbook of Polymer Nanocomposites for Industrial Applications. (Amsterdam: Elsevier, 2021).

4. 4. Ahmad A., Kumar R., Jawaid M. (Eds.) Emerging Techniques for Treatment of Toxic Metals from Wastewater. (Amsterdam: Elsevier, 2022).

5. 5. Singh S., Kumar P., Mondal D.P. (Eds.) Advanced Ceramics for Versatile Interdisciplinary Applications. (Amsterdam: Elsevier, 2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Silica Coating of Nickel–Iron Nanocomposite by Chemical Reduction Method;Journal of Molecular and Engineering Materials;2024-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3