Abstract
Amino end-group functionalised polyglycols are important intermediates in the synthesis of sophisticated polymeric architectures and biomaterials. Herein, we report a facile strategy for the end-group conversion of hydroxyl-terminated polyglycols to amino-terminated polyglycols in high isolated yields and with excellent end-group fidelity. Following traditional conversion of polyglycol hydroxyl end-groups to azides via the corresponding mesylate, reduction with zinc in the presence of ammonium chloride afforded a range of amino end-group functionalised poly(ethylene glycol) and poly(propylene glycol) homopolymers and copolymers with isolated yields of 82–99% and end-group conversions of >99% as determined by NMR spectroscopy and MALDI ToF MS. Furthermore, this process is applicable to a sequential reagent addition approach without intermediate polymer isolation steps with only a slight reduction in yield and end-group conversion (95%). Importantly, a simple work-up procedure provides access to high purity polyglycols without contamination from other reagents.
Funder
Cooperative Research Centre for Cell Therapy Manufacturing
Subject
Polymers and Plastics,General Chemistry
Reference50 articles.
1. Poly (Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications;Harris,1992
2. Partition of Cell Particles and Macromolecules: Separation and Purification of Biomolecules, Cell Organelles, Membranes, and Cells in Aqueous Polymer Two-Phase Systems and Their Use in Biochemical Analysis and Biotechnology;Albertsson,1986
3. Pegnology: A review of PEG-ylated systems;Bhadra;Pharmazie,2002
4. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications
5. Synthesis and biological properties of (carboxyalkyl)amino-substituted bicyclic lactam inhibitors of angiotensin converting enzyme
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献