Effects of Mould Temperature on Rice Bran-Based Bioplastics Obtained by Injection Moulding

Author:

Alonso-González MaríaORCID,Felix ManuelORCID,Guerrero AntonioORCID,Romero AlbertoORCID

Abstract

The high production rate of conventional plastics and their low degradability result in severe environmental problems, such as plastic accumulation and some other related consequences. One alternative to these materials is the production of oil-free bioplastics, based on wastes from the agro-food industry, which are biodegradable. Not only is rice bran an abundant and non-expensive waste, but it is also attractive due to its high protein and starch content, which can be used as macromolecules for bioplastic production. The objective of this work was to develop rice-bran-based bioplastics by injection moulding. For this purpose, this raw material was mixed with a plasticizer (glycerol), analysing the effect of three mould temperatures (100, 130 and 150 °C) on the mechanical and microstructural properties and water absorption capacity of the final matrices. The obtained results show that rice bran is a suitable raw material for the development of bioplastics whose properties are strongly influenced by the processing conditions. Thus, higher temperatures produce stiffer and more resistant materials (Young’s modulus improves from 12 ± 7 MPa to 23 ± 6 and 33 ± 6 MPa when the temperature increases from 100 to 130 and 150 °C, respectively); however, these materials are highly compact and, consequently, their water absorption capacity diminishes. On the other hand, although lower mould temperatures lead to materials with lower mechanical properties, they exhibit a less compact structure, resulting in enhanced water absorption capacity.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3