Tuning Thermal and Mechanical Properties of Polydimethylsiloxane with Carbon Fibers

Author:

Gupta Nevin Stephen,Lee Kwan-SooORCID,Labouriau Andrea

Abstract

In order to meet the needs of constantly advancing technologies, fabricating materials with improved properties and predictable behavior has become vital. To that end, we have prepared polydimethylsiloxane (PDMS) polymer samples filled with carbon nanofibers (CFs) at 0, 0.5, 1.0, 2.0, and 4.0 CF loadings (w/w) to investigate and optimize the amount of filler needed for fabrication with improved mechanical properties. Samples were prepared using easy, cost-efficient mechanical mixing to combine the PDMS and CF filler and were then characterized by chemical (FTIR), mechanical (hardness and tension), and physical (swelling, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and coefficient of thermal expansion) analyses to determine the material properties. We found that hardness and thermal stability increased predictably, while the ultimate strength and toughness both decreased. Repeated tension caused the CF-filled PDMS samples to lose significant toughness with increasing CF loadings. The hardness and thermal degradation temperature with 4 wt.% CF loading in PDMS increased more than 40% and 25 °C, respectively, compared with the pristine PDMS sample. Additionally, dilatometer measurements showed a 20% decrease in the coefficient of thermal expansion (CTE) with a small amount of CF filler in PDMS. In this study, we were able to show the mechanical and thermal properties of PDMS can be tuned with good confidence using CFs.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3