The Self-Enforcing Starch–Gluten System—Strain–Dependent Effects of Yeast Metabolites on the Polymeric Matrix

Author:

Alpers Thekla,Tauscher Viviane,Steglich Thomas,Becker Thomas,Jekle MarioORCID

Abstract

The rheological behaviour of dough during the breadmaking process is strongly affected by the accumulation of yeast metabolites in the dough matrix. The impact of metabolites in yeasted dough-like concentrations on the rheology of dough has not been characterised yet for process-relevant deformation types and strain rates, nor has the effect of metabolites on strain hardening behaviour of dough been analysed. We used fundamental shear and elongational rheometry to study the impact of fermentation on the dough microstructure and functionality. Evaluating the influence of the main metabolites, the strongest impact was found for the presence of expanding gas cells due to the accumulation of the yeast metabolite CO2, which was shown to have a destabilising impact on the surrounding dough matrix. Throughout the fermentation process, the polymeric and entangled gluten microstructure was found to be degraded (−37.6% average vessel length, +37.5% end point rate). These microstructural changes were successfully linked to the changing rheological behaviour towards a highly mobile polymer system. An accelerated strain hardening behaviour (+32.5% SHI for yeasted dough) was promoted by the pre-extension of the gluten strands within the lamella around the gas cells. Further, a strain rate dependency was shown, as a lower strain hardening index was observed for slow extension processes. Fast extension seemed to influence the disruption of sterically interacting fragments, leading to entanglements and hindered extensibility.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3