Strain-dependent assessment of dough’s polymer structure and functionality during the baking process

Author:

Alpers TheklaORCID,Becker Thomas,Jekle MarioORCID

Abstract

During the baking process, the functionality of the heterogeneous dough matrix changes as the composing polymers experience conformational transition processes. The thermally induced structural changes affect the involvement and functionality of the polymers in the dough matrix. With the main hypothesis being that different types and magnitudes of strain exerted during the measurement would provide information on different structural levels and interactions, SAOS rheology in multiwave mode and large deformation extensional rheometry were applied to two microstructurally different systems. The functionality of the two systems, a highly connected standard wheat dough (φ ≈ 1.1) and an aerated, yeasted wheat dough (φ ≈ 2.3), depicting limited connectivity and strength of interactions, was accessed under different deformations and types of strains. Applying SAOS rheology, starch functionality prevailed on the behavior of the dough matrix. In contrast, gluten functionality prevailed the large deformation behavior. Using an inline fermentation and baking LSF technique, the heat-induced gluten polymerization was shown to increase strain hardening behavior above 70°C. In the aerated system, the strain hardening effect became already evident under small deformation testing, as the expansion of gas cells caused a pre-expansion of the gluten strands. The expanded dough matrix of yeasted dough was further shown to be substantially subjected to degradation once the network reached beyond its maximal gas holding capacity. Using this approach, the combined impact of yeast fermentation and thermal treatment on the strain hardening behavior of wheat dough was revealed for the first time by LSF. Furthermore, the rheological properties were successfully linked to oven rise behavior: a decreasing connectivity combined with the initiation of strain hardening by fast extension processes occurring in the yeasted dough matrix during the final baking phase was linked to limited oven rise functionality prematurely around 60°C.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference37 articles.

1. Starch-gluten interactions during gelatinization and its functionality in dough like model systems;M. Jekle;Food Hydrocoll.,2016

2. Short- and long-range interactions governing the viscoelastic properties during wheat dough and model dough development;B. Schiedt;J. Texture Stud.,2013

3. Comparison of Small and Large Deformation Measurements to Characterize the Rheology of Wheat Flour Doughs;J. I. Amemiya;ELSEVIER SCIENCE PUBLISHERS LTD,1992

4. Influence of supramolecular forces on the linear viscoelasticity of gluten;V. Kontogiorgos;Rheol. Acta,2016

5. Relation between concentration and shear-extensional rheology properties of xanthan and guar gum solutions;J. Martín-Alfonso;Carbohydr. Polym.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3