High Performance PA 6/Cellulose Nanocomposites in the Interest of Industrial Scale Melt Processing

Author:

Sridhara Pruthvi K.ORCID,Vilaseca Fabiola

Abstract

On an industrial scale, it is a challenge to achieve cellulose based nanocomposites due to dispersion issues and high process temperatures sensitivity. The current study describes methods to develop mechanically strong and thermally stable polyamide 6 (PA 6) and cellulose nanofibers (CNF) composites capable of tolerating high processing temperatures. With PA 6 being a very technical polymer matrix to be reinforced with CNF, good dispersion can be achieved with a high speed kinetic mixer and also shield the CNF from excess thermal degradation by implementing extremely short processing time. This paper presents an industrially feasible method to produce PA 6/CNF nanocomposites with high CNF composition processed by a high speed kinetic mixer (GELIMAT®) followed by compression molding to obtain a homogenous and thermally stable nanocomposites aimed at high performance applications. PA 6 was reinforced with three different wt % formulations (5, 15 and 25 wt %) of cellulose nanofibers. The resulting nanocomposites exhibited significant increase in Young’s modulus and ultimate strength with CNF content, owing to the effective melt processing and the surface charge density of the CNF, which necessitated the dispersion. The thermal stability and polymer crystallinity with respect to CNF composition for the PA 6/CNF nanocomposites were examined by TGA and DSC analysis. Rheology studies indicated that viscosity of the composites increased with increase in CNF composition. Overall, this work demonstrates industrially viable manufacturing processes to fabricate high performance PA 6/CNF nanocomposites.

Funder

Wallenberg Wood Science Center

Universitat de Girona

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3