Properties of kenaf fiber-reinforced polyamide 6 composites

Author:

Abdullah Norihan1,Abdan Khalina1,Roslim Muhammad Huzaifah Mohd2,Radzuan Mohd Nazren3,Shafi Ayu Rafiqah1,Hao Lee Ching4

Affiliation:

1. Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 Serdang , Selangor , Malaysia

2. Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Campus , 97008 Bintulu , Sarawak , Malaysia

3. Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia , 43400 Serdang , Selangor , Malaysia

4. School of Engineering, Faculty of Innovation and Technology, Taylor’s University , 47500 Subang Jaya , Selangor , Malaysia

Abstract

Abstract Despite the increasing interest in polyamide-based composites, few studies on polyamide-based natural fiber composites have been conducted due to their high melting temperatures of polyamide 6 (PA6). In this study, kenaf fiber-reinforced polyamide 6 composites (KF/PA6) were successfully prepared and their properties were investigated. Thermogravimetric analysis demonstrated that the neat PA6 has higher thermal stability with higher melting temperatures of 426°C, respectively, than KF/PA6 composites. The results of the differential scanning calorimeter showed that the glass transition temperature (T g) of KF/PA6 composites was slightly shifted to a higher temperature at 59°C than that of the neat PA6 at 45°C. The thermal and mechanical characteristics using dynamic mechanical analysis results showed that the storage and loss modulus of the neat PA6 were higher than those of KF/PA6 composites. The neat PA6 showed the maximum tensile strength of 48 MPa; however, the maximum tensile modulus was obtained at 10 wt% KF with 2,100 MPa. The flexural strength and modulus of the neat PA6 were 91 and 2,506 MPa, respectively, which were higher than those of KF/PA6 composites. The impact strength also deteriorated with the addition of KF, from 3.72 to 1.91 kJ·m−2. Voids, fiber pulled-out, and agglomeration were observed in scanning electron microscope analysis on the tensile fractured surfaces.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3