Experimental Research on Fatigue Behavior of Reinforced UHPC-NC Composite Beams under Cyclic Loading

Author:

Wang Jue12,Ji Wenyu1,Li Wangwang3,Zhao Tibo3

Affiliation:

1. School of Civil Engineering and Architecture, Beijing Jiaotong University, Beijing 100044, China

2. CCCC Highway Bridges National Engineering Research Centre Co., Ltd., Beijing 100088, China

3. Railway Engineering Research Institute, China Academy of Railway Sciences Co., Ltd., Beijing 100081, China

Abstract

Ultra-high-performance concrete (UHPC), a new cement-based material that offers high mechanical strength and good durability, has been widely applied in construction and rehabilitation projects in recent years. An optimum bending system is achieved by positioning the UHPC layer at the bottom tensile zone of the composite beam and placing the normal-strength concrete (NC) layer at the upper compression zone, which is described as the UHPC-NC composite beam. The fatigue behavior of reinforced UHPC-NC composite beams was described in this study, with an emphasis on the effects of UHPC layer thickness and fatigue load level on the fatigue life of the beam, deformation of the interface between UHPC and NC layers, as well as the bending stiffness of the beam. A total of 9 reinforced UHPC-NC composite beams were tested under cyclic loading. The test variables include UHPC layer thicknesses (zero, 200, and 360 mm), reinforcement ratios (1.184% and 1.786%), and the upper load levels (0.39~0.65). The results showed that good bonding had been achieved without delamination between UHPC and NC layers prior to the final fatigue failure of the beam, and the bending stiffness of the composite beam experienced a three-stage reduction under cyclic loading. Furthermore, an equation was proposed to predict the stiffness reduction coefficient of UHPC-NC composite beams under cyclic loading.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3