One-Pot Preparation of Metal–Polymer Nanocomposites in Irradiated Aqueous Solutions of 1-Vinyl-1,2,4-triazole and Silver Ions

Author:

Zezin Alexey A.,Zharikov Alexey A.,Emel’yanov Artem I.ORCID,Pozdnyakov Alexander S.ORCID,Prozorova Galina F.ORCID,Abramchuk Sergei S.,Zezina Elena A.

Abstract

Metal–polymer nanocomposite polyvinyltriazole–silver nanoparticles were obtained using one-pot synthesis in irradiated aqueous solutions of 1-vinyl-1,2,4-triazole (VT) and silver ions. Gel permeation chromatography data show that upon radiation initiation, the molecular weight of poly(1-vinyl-1,2,4-triazole) increases with increasing monomer concentration. To study the kinetics of polymerization and the features of the radiation–chemical formation of nanoparticles, UV-Vis spectroscopy was used. TEM images show a relatively small average size of the forming nanoparticles (2–3 nm) and a narrow size distribution, which shows the effective stabilization of nanoparticles by triazole substituents at a molar ratio of VT and silver ions of 25/1. The addition of ethyl alcohol was used to increase the efficiency of synthesis and suppress the crosslinking of macromolecules in solution. The results of the work show that aqueous–alcoholic solutions of 1 wt.% VT can be used to obtain soluble nanocomposite materials. 10 wt.% monomer solutions have prospects for use in the preparation of polymer gels filled with nanoparticles.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference43 articles.

1. Hybrid Polymer Composite Materials: Structure and Chemistry;Thakur,2017

2. Notes on useful materials and synthesis through various chemical solution techniques;Mandal,2021

3. Sensitive detection of metals and metalloids by using nanostructures and fluorimetric method;Ocak,2020

4. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis

5. Magnetic Iron Oxide Nanoparticles: Chemical Synthesis and Applications Review

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3