Proton-Conducting Polymeric Membranes Based on 1,2,4-Triazole

Author:

Prozorova Galina F.1ORCID,Pozdnyakov Alexander S.1ORCID

Affiliation:

1. A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia

Abstract

In this review, a comparative analysis of the literature and our own results obtained in the study of the physicochemical, dielectric, and proton-conducting properties of composite polymer materials based on 1H-1,2,4-triazole has been carried out. It has been established that 1H-1,2,4-triazole and homopolymers and copolymers of 1-vinyl-1,2,4-triazole are promising for the development of proton-conducting fuel cell membranes. They significantly improve the basic characteristics of electrolyte membranes, increase their film-forming ability, increase thermal stability up to 300–330 °C, increase the electrochemical stability region up to 3–4 V, promote high mechanical strength and morphological stability of membranes, and provide high ionic conductivity (up to 10−3–10−1 S/cm) under anhydrous conditions at temperatures above 100 °C. There is also an improvement in the solubility and a decrease in the glass transition temperature of polymers based on 1-vinyl-1,2,4-triazole, which facilitates the processing and formation of membrane films. The results obtained demonstrate the uniqueness of 1H-1,2,4-triazole and (co)polymers based on 1-vinyl-1,2,4-triazole and the promise of their use for the creation of heat-resistant plastic and electrochemically stable, mechanically strong proton-conducting membranes with high ionic conductivity under anhydrous conditions and at high temperatures.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3