Coaxial Electrospun PLLA Fibers Modified with Water-Soluble Materials for Oligodendrocyte Myelination

Author:

Liu ZhepengORCID,Wang Jing,Chen Haini,Zhang Guanyu,Lv Zhuman,Li Yijun,Zhao Shoujin,Li Wenlin

Abstract

Myelin sheaths are essential in maintaining the integrity of axons. Development of the platform for in vitro myelination would be especially useful for demyelinating disease modeling and drug screening. In this study, a fiber scaffold with a core–shell structure was prepared in one step by the coaxial electrospinning method. A high-molecular-weight polymer poly-L-lactic acid (PLLA) was used as the core, while the shell was a natural polymer material such as hyaluronic acid (HA), sodium alginate (SA), or chitosan (CS). The morphology, differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), contact angle, viability assay, and in vitro myelination by oligodendrocytes were characterized. The results showed that such fibers are bead-free and continuous, with an average size from 294 ± 53 to 390 ± 54 nm. The DSC and FTIR curves indicated no changes in the phase state of coaxial brackets. Hyaluronic acid/PLLA coaxial fibers had the minimum contact angle (53.1° ± 0.24°). Myelin sheaths were wrapped around a coaxial electrospun scaffold modified with water-soluble materials after a 14-day incubation. All results suggest that such a scaffold prepared by coaxial electrospinning potentially provides a novel platform for oligodendrocyte myelination.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3