Abstract
This work provided an alternative route to balance the significantly increased dielectric permittivity (ε′) and effectively retained tanδ using an effective two-step concept. Ag-deposited nano-sized BaTiO3 (Ag-nBT) hybrid particle was used as the first filler to increase the ε′ of the poly(vinylidene-fluoride) (PVDF) polymer via the strong interfacial polarization and a high permittivity of nBT and suppress the increased loss tangent (tanδ) owing to the discrete growth of Ag nanoparticles on the surface of nBT, preventing a continuous percolating path. The ε′ and tanδ values at 103 Hz of the Ag-nBT/PVDF composite with fAg-nBT~0.29 were 61.7 and 0.036. The sub-micron-sized BaTiO3 (μBT) particle was selected as the blocking particles to doubly reduce the tanδ with simultaneously enhanced ε′ due to the presence of the tetragonal BT phase. The μBT blocking particles can effectively further inhibit the formation of conducting network and hence further reducing tanδ. By incorporation of μBT clocking particles with fμBT = 0.2, the ε′ value of the Ag-nBT/PVDF-μBT composite (fAg-nBT = 0.30) can significantly increase to 161.4, while the tanδ was reduced to 0.026. Furthermore, the tanδ was lower than 0.09 in the temperature range of −60–150 °C due to the blocking effect of μBT particles.
Funder
Basic Research Fund of Khon Kaen University and the Research and Graduate Studies
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献