Effective Adsorption and Sensitive Detection of Cr(VI) by Chitosan/Cellulose Nanocrystals Grafted with Carbon Dots Composite Hydrogel

Author:

Zeng Hua,Hu Zhiyuan,Peng Chang,Deng Lei,Liu Suchun

Abstract

Due to its lethal effect on the human body and other creatures, Cr(VI) ions have attained widespread public attention, and an effective adsorbent for removing Cr(VI) ions is vital. Chitosan (CS)/cellulose nanocrystals grafted with carbon dots (CNCD) composite hydrogel with strong sorption ability and sensitive detection ability for Cr(VI) was formed. The cellulose nanocrystals (CN) offered a natural skeleton for assembling 3D porous structures, and then improved the sorption ability for Cr(VI); moreover, carbon dots (CD) acted as a fluorescent probe for Cr(VI) and provided Cr(VI) adsorption sites. With a maximum adsorption capacity of 217.8 mg/g, the CS/CNCD composite hydrogel exhibited efficient adsorption properties. Meanwhile, with a detection limit of 0.04 μg/L, this hydrogel was used for selective and quantitative detection of Cr(VI). The determination of Cr(VI) was based on the inner filter effect (IFE) and static quenching. This hydrogel retained its effective adsorption ability even after four repeated regenerations. Furthermore, the economic feasibility of the CS/CNCD composite hydrogel over activated carbon was confirmed using cost analysis. This study provided one new method for producing low-cost adsorbents with effective sorption and sensitive detection for Cr(VI).

Funder

National Natural Science Foundation of China

Innovation and entrepreneurship training program for college students of Hunan Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3