Abstract
Background: Microcirculation is a vital sign that supplies oxygen and nutrients to maintain normal life activities. Sepsis typically influences the operation of microcirculation, which is recovered by the administration of medicine injection. Objective: Sepsis-induced variation and recovery of microcirculation are quantitatively detected using microcirculation images acquired by a non-contact imaging setup, which might assist the clinical diagnosis and therapy of sepsis. Methods: In this study, a non-contact imaging setup was first used to record images of microcirculation on the back of model rats. Specifically, the model rats were divided into three groups: (i) the sham group as a control group; (ii) the cecum ligation and puncture (CLP) group with sepsis; and (iii) the CLP+thrombomodulin (TM) group with sepsis and the application of TM alfa therapy. Furthermore, considering the sparsity of red blood cells (RBCs), the blood velocity is estimated by robust principal component analysis (RPCA) and U-net, and the blood vessel diameter is estimated by the contrast difference between the blood vessel and tissue. Results and Effectiveness: In the experiments, the continuous degradation of the estimated blood velocity and blood vessel diameter in the CLP group and the recovery after degradation of those in the CLP+TM group were quantitatively observed. The variation tendencies of the estimated blood velocity and blood vessel diameter in each group suggested the effects of sepsis and its corresponding therapy.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献