Abstract
The spatial resolution of electron probe microanalysis (EPMA), a non-destructive method to determine the chemical composition of materials, is currently restricted to a pixel size larger than the volume of interaction between beam electrons and the material, as a result of limitations on the underlying k-ratio model. Using more sophisticated models to predict k-ratios while solving the inverse problem of reconstruction offers a possibility to increase the spatial resolution. Here, a k-ratio model based on the deterministic M1-model in Boltzmann Continuous Slowing-Down approximation (BCSD) will be utilized to present a reconstruction method for EPMA which is implemented as a PDE-constrained optimization problem. Iterative gradient-based optimization techniques are used in combination with the adjoint state method to calculate the gradient in order to solve the optimization problem efficiently. The accuracy of the spatial resolution still depends on the number and quality of the measured data, but in contrast to conventional reconstruction methods, an overlapping of the interaction volumes of different measurements is permissible without ambiguous solutions. The combination of k-ratios measured with various electron beam configurations is necessary for a high resolution. Attempts to reconstruct materials with synthetic data show challenges that occur with small reconstruction pixels, but also indicate the potential to improve the spatial resolution in EPMA using the presented method.
Funder
Deutsche Forschungsgemeinschaft
Subject
Applied Mathematics,Computational Mathematics,General Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献