Collapsed Building Detection Using 3D Point Clouds and Deep Learning

Author:

Xiu HaoyiORCID,Shinohara TakayukiORCID,Matsuoka MasashiORCID,Inoguchi Munenari,Kawabe KenORCID,Horie Kei

Abstract

Collapsed buildings should be detected with the highest priority during earthquake emergency response, due to the associated fatality rates. Although deep learning-based damage detection using vertical aerial images can achieve high performance, as depth information cannot be obtained, it is difficult to detect collapsed buildings when their roofs are not heavily damaged. Airborne LiDAR can efficiently obtain the 3D geometries of buildings (in the form of point clouds) and thus has greater potential to detect various collapsed buildings. However, there have been few previous studies on deep learning-based damage detection using point cloud data, due to a lack of large-scale datasets. Therefore, in this paper, we aim to develop a dataset tailored to point cloud-based building damage detection, in order to investigate the potential of point cloud data in collapsed building detection. Two types of building data are created: building roof and building patch, which contains the building and its surroundings. Comprehensive experiments are conducted under various data availability scenarios (pre–post-building patch, post-building roof, and post-building patch) with varying reference data. The pre–post scenario tries to detect damage using pre-event and post-event data, whereas post-building patch and roof only use post-event data. Damage detection is implemented using both basic and modern 3D point cloud-based deep learning algorithms. To adapt a single-input network, which can only accept one building’s data for a prediction, to the pre–post (double-input) scenario, a general extension framework is proposed. Moreover, a simple visual explanation method is proposed, in order to conduct sensitivity analyses for validating the reliability of model decisions under the post-only scenario. Finally, the generalization ability of the proposed approach is tested using buildings with different architectural styles acquired by a distinct sensor. The results show that point cloud-based methods can achieve high accuracy and are robust under training data reduction. The sensitivity analysis reveals that the trained models are able to locate roof deformations precisely, but have difficulty recognizing global damage, such as that relating to the roof inclination. Additionally, it is revealed that the model decisions are overly dependent on debris-like objects when surroundings information is available, which leads to misclassifications. By training on the developed dataset, the model can achieve moderate accuracy on another dataset with different architectural styles without additional training.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3