An Ensemble Modeling Framework for Distinguishing Nitrogen, Phosphorous and Potassium Deficiencies in Winter Oilseed Rape (Brassica napus L.) Using Hyperspectral Data

Author:

Liu Shishi,Yang Xin,Guan QingfengORCID,Lu Zhifeng,Lu Jianwei

Abstract

Nitrogen (N), phosphorous (P), and potassium (K) are important macronutrients to crops. Deficiencies of these nutrients can change the pigment content in leaves and affect photosynthesis, resulting in the similar spectral characteristics at some wavelengths. Thus, one of the most important challenges in crop nutrient stress assessment through the canopy’s spectral reflectance is the ability to discriminate different nutrient stress conditions. This study proposes a three-layer ensemble-modeling framework to analyze N, P, and K nutrient stresses utilizing canopy hyperspectral data of crops. The framework selects spectral bands that are sensitive to N, P, and K nutrient deficiency levels, using ensembles of random forest classifiers, and then the reflectance of the selected bands is transformed into the more distinguishable probability features to diagnose the N, P, and K nutrient deficiency levels. For this study, this proposed framework was applied to winter oilseed rape (Brassica napus L.) during the overwintering stage, with 915 spectra samples collected from 14 field experiments. The analysis of nutrient deficiency levels resulting from the proposed framework was compared with that of single random forest, support vector machine, and artificial neural network classifiers, using the same reflectance features selected in the first layer of the framework. The overall accuracy of the nutrient deficiency analysis achieved by the proposed framework reached 80.76%, which was 16.55%, 18.43%, and 35.74% higher than the single random forest, support vector machine, and artificial neural network classifiers, respectively. The proposed framework demonstrated competitive advantages in differentiating the medium deficiency of N and K, and the severe deficiency of K from the normal conditions, boosting the accuracy from below 25% to above 50% because the probability features enhanced the differences among nutrient deficiency levels.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3