Characterization and Identification of NPK Stress in Rice Using Terrestrial Hyperspectral Images

Author:

Wang Jinfeng1ORCID,Chu Yuhang1,Chen Guoqing1,Zhao Minyi1,Wu Jizhuang2,Qu Ritao2,Wang Zhentao13ORCID

Affiliation:

1. College of Engineering, Northeast Agricultural University, Harbin 150000, China.

2. Yantai Agricultural Technology Popularization Center, Yantai 261400, China.

3. College of Life Sciences, Northwest A&F University, Yangling 712100, China.

Abstract

Due to nutrient stress, which is an important constraint to the development of the global agricultural sector, it is now vital to timely evaluate plant health. Remote sensing technology, especially hyperspectral imaging technology, has evolved from spectral response modes to pattern recognition and vegetation monitoring. This study established a hyperspectral library of 14 NPK (nitrogen, phosphorus, potassium) nutrient stress conditions in rice. The terrestrial hyperspectral camera (SPECIM-IQ) collected 420 rice stress images and extracted as well as analyzed representative spectral reflectance curves under 14 stress modes. The canopy spectral profile characteristics, vegetation index, and principal component analysis demonstrated the differences in rice under different nutrient stresses. A transformer-based deep learning network SHCFTT (SuperPCA-HybridSN-CBAM-Feature tokenization transformer) was established for identifying nutrient stress patterns from hyperspectral images while being compared with classic support vector machines, 1D-CNN (1D-Convolutional Neural Network), and 3D-CNN. The total accuracy of the SHCFTT model under different modeling strategies and different years ranged from 93.92% to 100%, indicating the positive effect of the proposed method on improving the accuracy of identifying nutrient stress in rice.

Funder

China's National Key R & D Plan

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3