A Deep Learning Method for Mapping Glacial Lakes from the Combined Use of Synthetic-Aperture Radar and Optical Satellite Images

Author:

Wu RenzheORCID,Liu Guoxiang,Zhang Rui,Wang XiaowenORCID,Li Yong,Zhang Bo,Cai JialunORCID,Xiang WeiORCID

Abstract

Glacial lakes (GLs), a vital link between the hydrosphere and the cryosphere, participate in the local hydrological process, and their interannual dynamic evolution is an objective reflection and an indicator of regional climate change. The complex terrain and climatic conditions in mountainous areas where GLs are located make it difficult to employ conventional remote sensing observation means to obtain stable, accurate, and comprehensive observation data. In view of this situation, this study presents an algorithm with a high generalization ability established by optimizing and improving a deep learning (DL) semantic segmentation network model for extracting GL contours from combined synthetic-aperture radar (SAR) amplitude and multispectral imagery data. The aim is to use the high penetrability and all-weather advantages of SAR to reduce the effects of cloud cover as well as to integrate the multiscale and detail-oriented advantages of multispectral data to facilitate accurate, quantitative extraction of GL contours. The accuracy and reliability of the model and algorithm were examined by employing them to extract the contours of GLs in a large region of south-eastern Tibet from Landsat 8 optical remote sensing images and Sentinel-1A amplitude images. In this study, the contours of a total 8262 GLs in south-eastern Tibet were extracted. These GLs were distributed predominantly at altitudes of 4000–5500 m. Only 17.4% of these GLs were greater than 0.1 km2 in size, while a large number of small GLs made up the majority. Through analysis and validation, the proposed method was found highly capable of distinguishing rivers and lakes and able to effectively reduce the misidentification and extraction of rivers. With the DL model based on combined optical and SAR images, the intersection-over-union (IoU) score increased by 0.0212 (to 0.6207) on the validation set and by 0.038 (to 0.6397) on the prediction set. These validation data sufficiently demonstrate the efficacy of the model and algorithm. The technical means employed in this study as well as the results and data obtained can provide a reference for research and application expansion in related fields.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3