Using the Improved YOLOv5-Seg Network and Sentinel-2 Imagery to Map Glacial Lakes in High Mountain Asia

Author:

Yin Lichen1ORCID,Wang Xin12,Du Wentao23,Yang Chengde1ORCID,Wei Junfeng1ORCID,Wang Qiong14ORCID,Lei Dongyu1,Xiao Jingtao1

Affiliation:

1. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. School of Geography and Tourism, Shaanxi Normal University, Xi’an 710062, China

Abstract

Continuously monitoring and mapping glacial lake variation is of great importance for determining changes in water resources and potential hazards in alpine cryospheric regions. The semi-automated glacial lake mapping methods used currently are hampered by inherent subjectivity and inefficiency. This study used improved YOLOv5 strategies to extract glacial lake boundaries from Sentinel-2 imagery. These strategies include using the space-to-depth technique to identify small glacial lakes, and adopting the coordinate attention and the convolution block attention modules to improve mapping performance and adaptability. In terms of glacial lake extraction, the improved YOLOv5-seg network achieved values of 0.95, 0.93, 0.96, and 0.94 for precision (P), recall (R), mAP_0.5, and the F1 score, respectively, indicating an overall improvement in performance of 12% compared to that of the newest YOLOv8 networks. In High Mountain Asia (HMA), 23,108 glacial lakes with a total area of 1847.5 km² were identified in imagery from 2022 using the proposed method. Compared with the use of manual interpretation for lake boundary extraction in test sites of HMA, the proposed method achieved values of 0.89, 0.87, and 0.86 for P, R, and the F1 score, respectively. Our proposed deep learning method has improved accuracy in glacial lake extraction because it can address the challenge represented by frozen or high-turbidity glacial lakes in HMA.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3