Spaceborne Multifrequency PolInSAR-Based Inversion Modelling for Forest Height Retrieval

Author:

Kumar ShashiORCID,Govil Himanshu,Srivastava Prashant K.,Thakur Praveen K.ORCID,Kushwaha Satya P. S.

Abstract

Spaceborne and airborne polarimetric synthetic-aperture radar interferometry (PolInSAR) data have been extensively used for forest parameter retrieval. The PolInSAR models have proven their potential in the accurate measurement of forest vegetation height. Spaceborne monostatic multifrequency data of different SAR missions and the Global Ecosystem Dynamics Investigation (GEDI)-derived forest canopy height map were used in this study for vegetation height retrieval. This study tested the performance of PolInSAR complex coherence-based inversion models for estimating the vegetation height of the forest ranges of Doon Valley, Uttarakhand, India. The inversion-based forest height obtained from the three-stage inversion (TSI) model had higher accuracy than the coherence amplitude inversion (CAI) model-based estimates. The vegetation height values of GEDI-derived canopy height map did not show good relation with field-measured forest height values. It was found that, at several locations, GEDI-derived forest height values underestimated the vegetation height. The statistical analysis of the GEDI-derived estimates with field-measured height showed a high root mean square error (RMSE; 5.82 m) and standard error (SE; 5.33 m) with a very low coefficient of determination (R2; 0.0022). An analysis of the spaceborne-mission-based forest height values suggested that the L-band SAR has great potential in forest height retrieval. TSI-model-based forest height values showed lower p-values, which indicates the significant relation between modelled and field-measured forest height values. A comparison of the results obtained from different SAR systems is discussed, and it is observed that the L-band-based PolInSAR inversion gives the most reliable result with low RMSE (2.87 m) and relatively higher R2 (0.53) for the linear regression analysis between the modelled tree height and the field data. These results indicate that higher wavelength PolInSAR datasets are more suitable for tree canopy height estimation using the PolInSAR inversion technique.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3