High-Performance Crown Ether-Modified Membranes for Selective Lithium Recovery from High Na+ and Mg2+ Brines Using Electrodialysis

Author:

Yin Xiaochun1ORCID,Xu Pei1ORCID,Wang Huiyao1

Affiliation:

1. Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA

Abstract

The challenge of efficiently extracting Li+ from brines with high Na+ or Mg2+ concentrations has led to extensive research on developing highly selective separation membranes for electrodialysis. Various studies have demonstrated that nanofiltration membranes or adsorbents modified with crown ethers (CEs) such as 2-OH-12-crown-4-ether (12CE), 2-OH-18-crown-6-ether (18CE), and 2-OH-15-crown-5-ether (15CE) show selectivity for Li+ in brines. This study aims to develop high-performance cation exchange membranes (CEMs) using CEs to enhance Li+ selectivity and to compare the performance of various CE-modified membranes for selective electrodialysis. The novel CEM (CR671) was modified with 12CE, 18CE, and 15CE to identify the optimal CE for efficient Li+ recovery during brine electrodialysis. The modification process included polydopamine (PDA) treatment and the deposition of polyethyleneimine (PEI) complexes with the different CEs via hydrogen bonding. Interfacial polymerization with 1,3,5-benzenetricarbonyl trichloride-crosslinked PEI was used to create specific channels for Li+ transport within the modified membranes (12CE/CR671, 15CE/CR671, and 18CE/CR671). The successful application of CE coatings and Li+ selectivity of the modified membranes were verified through Fourier-transform infrared spectroscopy, zeta-potential measurements, and electrochemical impedance spectroscopy. Bench-scale electrodialysis tests showed significant improvements in permselectivity and Li+ flux for all three modified membranes. In brines with high Na+ and Mg2+ concentrations, the 15CE/CR671 membrane demonstrated more significant improvements in permselectivity compared to the 12CE/CR671 (3.3-fold and 1.7-fold) and the 18CE/CR671 (2.4-fold and 2.6-fold) membranes at current densities of 2.3 mA/cm2 and 2.2 mA/cm2, respectively. At higher current densities of 14.7 mA/cm2 in Mg2+-rich brine and 15.9 mA/cm2 in Na+-rich brine, the 15CE/CR671 membrane showed greater improvements in Li+ flux, approximately 2.1-fold and 2.3-fold, and 3.2-fold and 3.4-fold compared to the 12CE/CR671 and 18CE/CR671 membranes. This study underscores the superior performance of 15CE-modified membranes for efficient Li+ recovery with low energy demand and offers valuable insights for advancing electrodialysis processes in challenging brine environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3