Lithium in a Sustainable Circular Economy: A Comprehensive Review

Author:

Garcia Laura Vega1,Ho Yeek-Chia1,Myo Thant Maung Maung2,Han Dong Suk3ORCID,Lim Jun Wei4ORCID

Affiliation:

1. Centre for Urban Resource Sustainability, Civil and Environmental Engineering Department, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia

2. Advanced Expertise Common Centre, Group Research & Technology, Project Delivery & Technology Division, Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur 50088, Kuala Lumpur, Malaysia

3. Center for Advanced Materials, Department of Chemical Engineering, Qatar University, Doha PO Box 2713, Qatar

4. HICoE—Centre for Biofuel and Biochemical Research, Department of Fundamental and Applied Sciences, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia

Abstract

Lithium is a vital raw material used for a wide range of applications, such as the fabrication of glass, ceramics, pharmaceuticals, and batteries for electric cars. The accelerating electrification transition and the global commitment to decarbonization have caused an increasing demand for lithium. The current supply derived from brines and hard rock ores is not enough to meet the global demand unless alternate resources and efficient techniques to recover this valuable metal are implemented. In the past few decades, several approaches have been studied to extract lithium from aqueous resources. Among those studied, chemical precipitation is considered the most efficient technology for the extraction of metals from wastewater. This paper outlines the current technology, its challenges, and its environmental impacts. Moreover, it reviews alternative approaches to recover lithium via chemical precipitation, and systematically studies the effects of different operating conditions on the lithium precipitation rate. In addition, the biggest challenges of the most recent studies are discussed, along with implications for future innovation.

Funder

Petronas

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3