Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model

Author:

Khaliq AbdulORCID,Ibrahim Tarek F.ORCID,Alotaibi Abeer M.,Shoaib Muhammad,El-Moneam Mohammed AbdORCID

Abstract

This research manifesto has a comprehensive discussion of the global dynamics of an achievable discrete-time two predators and one prey Lotka–Volterra model in three dimensions, i.e., in the space R3. In some assertive parametric circumstances, the discrete-time model has eight equilibrium points among which one is a special or unique positive equilibrium point. We have also investigated the local and global behavior of equilibrium points of an achievable three-dimensional discrete-time two predators and one prey Lotka–Volterra model. The conversion of a continuous-type model into its discrete counterpart model has been completed by adopting a dynamically consistent nonstandard difference scheme with the end goal that the equilibrium points are conserved in twin cases. The difficulty lies in how to find all fixed points O,P,Q,R,S,T,U,V and the Jacobian matrix and its characteristic polynomial at the unique positive fixed point. For that purpose, we use Mathematica software to find the equilibrium points and all of the Jacobian matrices at those equilibrium points. Moreover, we discuss boundedness conditions for every solution and prove the existence of a unique positive equilibrium point. We discuss the local stability of the obtained system about all of its equilibrium points. The discrete Lotka–Volterra model in three dimensions is given by system (3), where parameters α,β,γ,δ,ζ,η,μ,ε,υ,ρ,σ,ω∈R+ and initial conditions x0,y0,z0 are positive real numbers. Additionally, the rate of convergence of a solution that converges to a unique positive equilibrium point is discussed. To represent theoretical perceptions, some numerical debates are introduced, including phase portraits.

Funder

King Khalid University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. Freedman, H.I. (1980). Deterministic Mathematical Models in Population Ecology, Marcel Dekker, Inc.

2. Allen, L.J.S. (2007). An Introduction to Mathematical Biology, Pearson Prentice Hall.

3. A General Predator-Prey Model;Krebs;Math. Comp. Model. Dyn. Syst.,2003

4. Edelstein-Keshet, L. (1988). Mathematical Models in Biology, McGraw-Hill.

5. Application of fractional derivative on non-linear biochemical reaction models;Sarbaz;Int. J. Intell. Netw.,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3