Evaluation of GHG Emission Measures Based on Shipping and Shipbuilding Market Forecasting

Author:

Wada Yujiro,Yamamura Tatsumi,Hamada Kunihiro,Wanaka Shinnosuke

Abstract

Greenhouse gas (GHG) emissions from the global shipping sector have been increasing due to global economic growth. The International Maritime Organization (IMO) has set a goal of halving GHG emissions from the global shipping sector by 2050 as compared with 2008 levels, and has responded by introducing several international regulations to reduce the GHG emissions of maritime transportation. The impact of GHG emissions’ regulation and measures to curb them have been evaluated in the IMO’s GHG studies. However, the long-term influence of these GHG emission measures has not yet been assessed. Additionally, the impact of various GHG reduction measures on the shipping and shipbuilding markets has not been considered; accordingly, there is room for improvement in the estimation of GHG emissions. Therefore, in this study, a model to consider GHG emission scenarios for the maritime transportation sector was developed using system dynamics and was integrated into a shipping and shipbuilding market model. The developed model was validated based on actual results and estimation results taken from a previous study. Subsequently, simulations were conducted, allowing us to evaluate the impact and effectiveness of GHG emission-curbing measures using the proposed model. Concretely, we conducted an evaluation of the effects of current and future measures, especially ship speed reduction, transition to liquid natural gas (LNG) fuel, promotion of energy efficiency design index (EEDI) regulation, and introduction of zero-emission ships, for GHG emission reduction. Additionally, we conducted an evaluation of the combination of current and future measures. The results showed that it is difficult to achieve the IMO goals for 2050 by combining only current measures and that the introduction of zero-emission ships is necessary to achieve the goals. Moreover, the limits of ship speed reduction were discussed quantitatively in relation to the maritime market aspect, and it was found that the feasible limit of ship speed reduction from a maritime market perspective was approximately 50%.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference30 articles.

1. Third IMO Greenhouse Gas Study 2014;Smith,2015

2. Analysis of Japan’s energy demand and supply to 2050 through integrated energy-economic model;Komiyama;J. Jpn. Soc. Energy Resour.,2012

3. Ratcheting ambition to limit warming to 1.5 °C–trade-offs between emission reductions and carbon dioxide removal

4. IMO: Fourth IMO GHG Study 2020, IMO MEPC 75/7/15https://docs.imo.org/

5. A Global Maritime Emissions Trading System—Design and Impacts on the Shipping Sector, Countries and Regions;Faber,2010

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3