Author:
Chaowamalee Supphathee,Yan Ning,Ngamcharussrivichai Chawalit
Abstract
Organosulfonic acid-functionalized mesoporous silica is a class of heterogeneous acid catalysts used in esterification processes due to its high surface area, shape-selective properties, and strongly acidic sites. Since water is generated as a by-product of esterification, the surface of mesostructured silica is modified to enhance hydrophobicity and catalytic performance. In this study, a series of propylsulfonic acid-functionalized nanocomposites based on natural rubber and hexagonal mesoporous silica (NRHMS-SO3H) with different acidities were prepared via an in situ sol-gel process using tetraethyl orthosilicate as the silica source, dodecylamine as the nonionic templating agent, and (3-mercaptopropyl)trimethoxysilane as the acid-functional group precursor. Compared with conventional propylsulfonic acid-functionalized hexagonal mesoporous silica (HMS-SO3H), NRHMS-SO3H provided higher hydrophobicity, while retaining mesoporosity and high surface area. The catalytic activity of synthesized solid acids was then evaluated via batch esterification of levulinic acid (LA) with alcohols (ethanol, n-propanol, and n-butanol) to produce alkyl levulinate esters. NRHMS-SO3H exhibited higher catalytic activity than HMS-SO3H and ultra-stable Y (HUSY) zeolite owing to the synergistic effect between the strongly acidic-functional group and surface hydrophobicity. The activation energy of the reaction over the NRHMS-SO3H surface was lower than that of HUSY and HMS-SO3H, suggesting that tuning the hydrophobicity and acidity on a nanocomposite surface is a compelling strategy for energy reduction to promote catalysis.
Funder
Thailand Science Research and Innovation
Subject
General Materials Science,General Chemical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献