The Green Synthesis of Biodiesel via Esterification in Water Catalyzed by the Phosphotungstic Acid–Functionalized Hydrophobic MCM–41 Catalyst

Author:

Li Dengke1234,Shi Qinghao123,Liang Fengbing123,Feng Dexin123

Affiliation:

1. Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

2. Shandong Energy Institute, Qingdao 266101, China

3. Qingdao New Energy Shandong Laboratory, Qingdao 266101, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Biodiesel is a non-toxic and environmentally friendly fuel that is made from renewable biological sources. It can replace petrochemical diesel and has very broad application prospects. However, the main raw materials in biodiesel are animal and plant oils, which present the problems of high costs and a lack of resources. The current research primarily emphasizes the transesterification process, with comparatively less focus on the esterification of fatty acids. In this paper, a series of phosphotungstic acid (PTA)-functionalized hydrophobic MCM–41 catalysts, OTS–PTA–MCM–41(Cx), were synthesized and used to catalyze the esterification of long-chain fatty acids with methanol in water. The experimental results show that the yield of esterification reached a maximum when catalyzed by OTS–PTA–MCM–41(Cx) and synthesized with a template agent with two carbon atoms less than the number of carbon atoms of a fatty acid. The effects of different reaction variables were investigated to optimize the reaction conditions for the maximum conversion. The stability of the catalyst was also verified. Finally, a mixed catalyst was used to catalyze in situ the esterification of fatty acids in a fermentation broth, which reached a high level (close to 90%). This paper provides references for the synthesis of a hydrophobic solid acid catalyst and green synthesis by esterification reactions in an aqueous solution and a fermentation broth system.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3