Abstract
Forming co-alloying solid solutions has long been considered as an effective strategy for improving thermoelectric performance. Herein, the dense Cu2−x(MnFeNi)xSe (x = 0–0.09) with intrinsically low thermal conductivity was prepared by a melting-ball milling-hot pressing process. The influences of nanostructure and compositional gradient on the microstructure and thermoelectric properties of Cu2Se were evaluated. It was found that the thermal conductivity decreased from 1.54 Wm−1K−1 to 0.64 Wm−1K−1 at 300 K via the phonon scattering mechanisms caused by atomic disorder and nano defects. The maximum zT value for the Cu1.91(MnFeNi)0.09Se sample was 1.08 at 750 K, which was about 27% higher than that of a pristine sample.
Funder
National Natural Science Foundation of China
Shandong Province Higher Educational Youth Innovative Science and Technology Program
Natural Science Foundation of Shandong Province
Subject
General Materials Science,General Chemical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献